Titrations H Ch 11

FIND EQUIVALENCE POINT FIRST

CORRECT MOLARITY AS TITRANT IS ADDED

homework for week 14,15

: ) ) due dates this Wednesda
H 11-4 Polyprotic Titrations and Friday g



Titrations H Ch 11

Titration of a Strong Base with a Strong Acid
EX: 50.00 mL of 0.02000 M KOH titrated with 0.12000 M HBr.

chemical equation (why reaction arrow?) net ionic equation
KOH(aq) + HBr(agq) —> KBr(aq) + H,O(l) H*(aq) + OH(agq) — H,O(l)

Titration of a Weak Acid with a Strong Base
EX: 50.00 mL of 0.02000 M MES, pK, = 6. 27, titrated with 0.1000 M NaOH.

chemical equation (why reaction arrow?) net ionic equation
NaOH(aq) + HA(ag) — NaA(aq) + H,O(l) HA(aq) + OH(agq) — A(aq) + H,O(l)



Finding the Principal Species at a Given pH

pH = pK, + log [base] / [acid]

More H More
acidic 5 basic
Predominant
H.A H,A- 2- 3-
form 3 - HA A
} 1 t 1
pK, pkK, pK,

pH=>(pK, +pK,)  PH=2(pK, + pK;)

[H;A] = [HA®] [H,AT]=[A%"]



Finding the Fraction Dissociated at a Given pH
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Leveling Effect: 2 H,O(l) <=> H;0*(aq) + OH(aq)

Strongest acid (base) that can exist in a solvent is the acidic (basic) autoionization species of the solvent.

Acidity Constants in Water at 25°C Acidity Constants in Water at 25°C
Acid Formula Conjugate Base K, pK, Acid Formula Conjugate Base K, pi,

A | Hydriodic HI 1 = 10" v —11 Hydrazoic HN, N; 19x 107 472
Hydrobromic HEr Br = 10° =) Acetic CH,COOH CH.COO 1.8 = 107 4.74
Perchloric HCIO, CIa; = 10 - —7 Propionic CH,CH.COOH CH.CH.COO 13 107° 4.89 Q
Hydrochloric HC Cl = 10 = Pyridinium ion HC H. N C,H,N {pyridine) 5.6 107" 525 =3
Chloric HCI0, Cl0; = |07 ~ —3 Carbonic (1) H.CO, HCO; 43 1077 6,37 S
Sulfuric (1) H.50, H50, i e =2 Sulfurous (2) HS0, SO; LOx 107 7.00 L

. Nitric HNO, NO; = 20 = —|.3 Arsenic (2) H.AsO); HAs0]™ 93 % 107" 7.03 g

O Hydronium ion H.0" H.O 1 0n.o Hydrosulluric H.5 H5~ 91 = 107" 7. Q

I | Urea acidium ion (NHJCONH;  (NH.)L,CO (urea) 6.6 % 107 0.18 Phosphoric (2) H.PO; HPOG™ 62x 107 7121 4

c | lodic HIO, 10, 1.6 % 107 0.80 Hypochlorous HCIO Clo~ 30X 1070 752 8

f__ﬁ Oxalic (1) H.C400, HC, 0, 50 1077 2 Hydrocyanic HCMN CN™ 62X 107" 9.21 =

- Sulfurous (1) H.50, HS50, 1.5 x 107* [.52 Ammonium jon MH; NH, 56x 107" 9,25 g

% Sulfuric (2) HSO, 50] 1.2 3¢ 1073 1.92 Carbonic (2) HCO; CO3 48 107" 1032 "8

g Chlorous HC1O, Clo; 1.l % 1072 .96 Methylammoniom ion  CH,NH; CH.MNH, 23x 107" 1064 -

43; Phosphoric (1) H.PO, H.PO; 7.5 % 107° .12 Arsenic (3) HAs(} Asy™ 30X 107" 1152 g:,T

n Arsenic (1) HiyAs(y H-AsO, 50 % 107 2.30 Hydrogen peroxide H.O, H 24 x 107" 11.62 =

% Chloroacetic CICH,COOH CICH.COO 1.4 x 1077 285 Phosphoric (3} HPO, POy 22x 107" 1266 %

@® Hydrofuoric HF F 6.6 % 107 318 Waler H-0 OH- 1.0 x> 107" 14.00 '
Milrous HMNO, WOy 46 1071 3134 Hydrogen sulfide ion HS g 1.0 = 1077 19,00
Formic HCOOH HCOO 1.8 x 107! 3.74 Hydrogen H. H 1.0 X 100%  33.00
Benzoic C.H.COOH C,H,C00 6.5 % 10°° 4.19 Ammonia NH, NH: 1.0 % 107" 38.00
Oxalic (2) HC,0, C,0; 6.4 % 107* 4.19 Hrdroxide ion OH" 0



Blackbody Radiation and
h the Greenhouse Effect
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Balance between energy reaching Earth from the sun and energy reradiated to space.




Average tem-
perature of
earth’s surface
IS about 59°F.
Without any
greenhouse
gases it would
be near -2°F.
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FIGURE 0-5 Greenhouse effect. The sun
warms the Earth mainly with visible radiation.
Earth emits infrared radiation, which would all

go into space in the absence of the atmosphere.
Greenhouse gases in the atmosphere absorb
some of the infrared radiation and emit some of
that radiation back to the Earth. Radiation directed
back to Earth by greenhouse gases keeps the
Earth warmer than it would be in the absence

of greenhouse gases.

Harris, Quantitative Chemical Analysis, 8e
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_ FIGURE 0-6 significance of the Keeling curve (upper right, color) is shown by plotting it on the
1998 - Russia,  same graph with atmospheric CO, measured in air bubbles trapped in ice cores drilled from Antarctica.
US, France in . < s .
. Atmospheric temperature at the level where precipitation forms is deduced from hydrogen and oxygen
Antartica — : é i : . .
3623 meters! isotopic compasition of the ice. [Vostok ice core data from J. M. Barnola, D. Raynaud, C. Lorius, and N. I. Barkoy,

http://cdiac.esd.oml.gov/ftp/trends/co2/vostok.icecore.co2.]
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Increase in CO, Over Past 60 Years

Atmospheric CO, at Mauna Loa Observatory

Scripps Institution of Oceanography up to November 7’ 2021
NOAA Global Monitoring Laboratory
400 Recent monthly mean CO, at Mauna Loa Observatory
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FIGURE 0-4 Monthly average atmospheric
CO, measured on Mauna Loa. This graph,
known as the Keeling curve, shows seasonal
oscillations superimposed on rising CO,.
[Data from http://scrippsco2.ucsd.edu/data/
in_situ_co2/monthly_mlo.csv.]

Historic CO, high of 280 ppm over 800,000 years
increased to current 416 ppm in past 200 years due
to burning fossil fuel (oil, coal, wood, natural gas) and
destruction - “clearing” - of earth’s forests.




Increase in CO, Over Past 60 Years

Atmospheric CO, at Mauna Loa Observatory

Recent monthly mean CO, at Mauna Loa Observatory
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The atmospheric burden of CO, is now comparable to where it was during the Pliocene Climatic
Optimum, between 4.1 and 4.5 million years ago, when CO, was close to, or above 400 ppm. During
that time, sea level was about 78 feet higher than today, the average temperature was 7 degrees

Fahrenheit higher than in pre-industrial times.

In February, the United States officially rejoined the Paris Agreement on climate change. Yet, as the
measurements from Mauna Loa show, despite decades of negotiation, the global community has
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been unable to meaningfully slow, let alone reverse, annual increases in atmospheric CO, levels.




CO, concentration (ppm)

Nature withdrawing CO, from air for plant growth during

summer and returning it each succeeding winter

Photosynthesis

6C0; + 6H,0 + Energy —-+ 60,

Respiration
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FIGURE 0-3 Atmospheric CO, measurements from Mauna Loa in 1958-1959. [J. D. Pales and C. D.
Keeling, “The Concentration of Atmospheric Carbon Dioxide in Hawaii,” J. Geophys. Res. 1965, 70, 6053.]




Global Warming

Global Mean Estimates based on Land and Ocean Data
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One effect of increasing levels of CO, in our atmosphere
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Pteropod

Low carbonate concentration promotes
dissolution of CaCO, shells and skeletons

CaCO,(s) = Ca?*(aq) + CO5%(aq)

Increasing atmospheric CO, increases
concentration of CO, dissolved in oceans,
which consumes carbonate and lowers the
pH

CO,(aq) + H,O()) + CO%(ag) = 2HCO,(aq)
(H,COy)

H,CO;: K, ;=45 x 107, K_,=4.7 x 101!

pre-industrial pH of oceans = 8.16
currently ocean pH =8.04
without change, pH by 2100 =7.7-7.8

(earth not experienced such low pH in > 20 million years)

shell beginning to dissolve




The Ozone Hole

A success story — use of Freons stopped (Montreal Protocol) and hole is healing
bans emissions of ozone depleting chemicals
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Big hole (size of North Amer-
ica) still there but ozone con-
centration does not appear to
be decreasing further.

(estimates than hole will “heal” —
attain pre-1980 levels — by 2060)
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FINAL Review

Final Exam:
Tuesday, December 7, 8:00 — 10:00 am, 312
Lincoln Hall
On Website:
On OWL Harris Review Topics
ChemWorks Review Topics Zumdahl Review Topics

Mastery Review Topics Equation Sheet for Final



FINAL Review

KNOWN TOPICS

Isotopes

Lewis Structures

Balancing Redox Reaction by Half-Reaction Method
Titrations

Nomenclature

Stoichiometry Calculations

Colligative Properties
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